
Compilers (Racket)
CSCI P423/523, Fall 2021 Midterm

Name:

This exam has 10 questions, for a total of 100 points.

1. 10 points Given the grammar below for expressions, indicate which of the following
programs are valid expressions, that is, which can be parsed as the exp non-terminal.

exp ::= int | (read) | (- exp) | (+ exp exp) | var | (let ([var exp]) exp)

1. (+ (- (read)) 42)

2. (+ (- (read) 42) (read))

3. (let ([x (* (read) 42)])
(- x))

4. (let ([x (let ([y (read)]) (+ 32 y))])
(- x))

5. 0

Solution: 2 points each

1. Yes

2. No, - takes only one argument

3. No, * is not in the grammar

4. Yes

5. Yes

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

2. 12 points Convert the following program to its Abstract Syntax Tree representation
and draw the tree.

(let ([x (read)])
(let ([y (read)])
(+ x (- y))))

Solution:

(Program ’()
(Let x (Prim read ’())
(Let y (Prim read ’())
(Prim + (list (Var x) (Prim - (list (Var y))))))))

Program

Let x

Prim readLet y

Prim readPrim +

Var x Prim –

Var y

Page 2 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

3. 8 points What is the output of the following LWhile program? Explain the state of the
x and y variable at the end of each loop iteration.

(let ([x 0])
(let ([y 1])
(begin

(while (begin (set! x (+ x 1)) (< x 4))
(set! y (+ y x)))

y)))

Solution: After first iteration of the loop: x = 1, y = 2. (2 points)

After second iteration of the loop: x = 2, y = 4. (2 points)

After third iteration of the loop: x = 3, y = 7. (2 points)

The program’s output is 7. (2 points)

Page 3 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

4. 7 points Write down the output of the Remove Complex Operands pass for the follow-
ing program.

(if (if (eq? (read) 1)
(eq? (read) 0)
#f)

(+ 10 32)
(+ 700 77))

Solution:

(if (if (let ([tmp4 (read)])
(eq? tmp4 1))

(let ([tmp5 (read)])
(eq? tmp5 0))

#f)
(+ 10 32)
(+ 700 77))

Page 4 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

5. 10 points Fill in the blanks to complete the following implementation of explicate-pred
for the LIf language. The cnd parameter is an exp in LIf ; the thn and els parameters
are tail in CIf . The result of explicate-pred must be a tail in CIf .
You may use the other explicate functions, explicate-tail and explicate-assign.
Recall that explicate-tail takes an exp in LIf and returns a tail in CIf . On other
other hand, explicate-assign takes an exp in LIf , a variable name, and a tail in CIf .
It returns a tail in CIf .
The auxiliary function create block takes a tail in CIf , generates a new label, adds
the label and the tail to the dictionary of basic blocks, then returns a Goto with the
generated label.

(define/public (explicate-pred cnd thn els)
(match cnd
[(Var x)
(IfStmt (Prim ’eq? (list cnd (Bool #f)))

(create_block els) (create_block thn))]
[(Bool b) (if b thn els)]
[(Prim ’not (list e))

__(a)__]
[(Prim op arg*) #:when (set-member? (comparison-ops) op)

__(b)__]
[(Let x rhs body)
(define new-body (explicate-pred body thn els))

__(c)__]
[(If inner-cnd inner-thn inner-els)
(define goto-thn (create_block thn))
(define goto-els (create_block els))
(define new-thn (explicate-pred inner-thn goto-thn goto-els))
(define new-els __(d)__)

__(e)__

]
[else (error ’explicate-pred "unmatched ~a" cnd)]))

Solution: 2 points each

(a) (explicate-pred e els thn)
(b) (IfStmt (Prim op arg*) (create_block thn) (create_block els))
(c) (explicate-assign rhs x new-body)
(d) (explicate-pred inner-els goto-thn goto-els)
(e) (explicate-pred inner-cnd new-thn new-els)

Page 5 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

6. 10 points Apply the Instruction Selection pass to the following CIf program.

start:
x4 = 1;
tmp5 = (read);
tmp6 = (eq? x4 tmp5);
if (eq? tmp6 #f)

goto block7;
else

goto block8;
block7:

return 777;
block8:

return 42;

Solution: 2 points each

1. Assignment of 1 to x4

2. Call to (read)

3. Assignment of (eq? x4 tmp5) to tmp6

4. The if statement.

5. The two return statements.

start:
movq $1, x4
callq read_int
movq %rax, tmp5
cmpq tmp5, x4
sete %al
movzbq %al, tmp6
cmpq $0, tmp6
je block7
jmp block8

block7:
movq $777, %rax
jmp conclusion

block8:
movq $42, %rax
jmp conclusion

Page 6 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

7. 11 points Annotate each of the following instructions with the set of variables that are
live immediately after the instruction. Annotate each label with the set of variables that
are live before the first instruction in the label’s block.

start:
callq read_int
movq %rax, x4
callq read_int
movq %rax, y5
callq read_int
movq %rax, tmp7
cmpq $0, tmp7
je block9
jmp block0

block9:
movq x4, z6
addq $1, z6
jmp block8

block0:
movq y5, z6
addq $2, z6
jmp block8

block8:
movq z6, %rax
negq %rax
jmp conclusion

Solution: 1/2 point each

start: { }
callq read_int { }
movq %rax, x4 { x4 }
callq read_int { x4 }
movq %rax, y5 { y5, x4 }
callq read_int { y5, x4 }
movq %rax, tmp7 { y5, tmp7, x4 }
cmpq $0, tmp7 { y5, x4 }
je block9 { y5, x4 }
jmp block0 { y5, x4 } or { y5 }

block9: { x4 }
movq x4, z6 { z6 }
addq $1, z6 { z6 }
jmp block8 { z6 }

block0: { y5 }
movq y5, z6 { z6 }
addq $2, z6 { z6 }
jmp block8 { z6 }

block8: { z6 }
movq z6, %rax { }
negq %rax { }
jmp conclusion { }

Page 7 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

8. 8 points Consider the following results from Liveness Analysis, in which each instruc-
tion is annotated with its live-after set and each label is annotated with the live-before
set of its first instruction. Draw the interference graph for this program.

start: { }
movq $1, a { a }
movq $42, b { b a }
movq b, f { b f a }
movq a, e { b f e }
addq b, e { f }
movq f, d { d }
movq d, %rax { }
jmp conclusion { }

Solution: 2 points for each edge

d b

a e

f

Page 8 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

9. 14 points Given the following interference graph, use the saturation-based graph col-
oring algorithm to assign the variables a, b, c, and d to registers and stack locations.
You may only use the registers rdi, rsi, and rbx. Recall that rdi and rsi are caller-
saved registers and rbx is callee-saved. Show each step of the algorithm, include the
saturation sets for each variable. To break ties regarding which variables to color first,
use alphabetical order.

rdi

a

b

rsi rbx

c

d

Solution: Here’s a register to color mapping: {rsi : 0, rdi : 1, rbx : 2}.

1. We pre-color the variables with the colors of the registers that they interfere
with. (2 points)

2. Both a and b have the same saturation, so we first color a to 2 (2 points)
(alphabetical order) and then color b to 3 (2 points), so b is spilled to the stack
at 16(%rbx).

3. We color d with 0 (2 points) and then c with 1 (2 points).

(1)

a : −, {0, 1}

b : −, {0, 1} d : −, {}

c : −, {}

(2)

a : 2, {0, 1, 3}

b : 3, {0, 1, 2} d : −, {2, 3}

c : −, {3}

(3)

a : 2, {0, 1, 3}

b : 3, {0, 1, 2} d : 0, {1, 2, 3}

c : 1, {0, 3}

Page 9 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

The assignment of variables to registers and stack locations is: (4 points)

{a : rbx, b : −16(%rbx), c : rdi, d : rsi}

Page 10 of 12

P423/523 Compilers (Racket) Midterm Fall 2021

Name:

10. 10 points Suppose that the output of the Patch Instructions pass is the following x86
assembly code. Write down the x86 assembly code for the prelude and conclusion of this
program and explain your answer.

start:
callq read_int
movq %rax, %rbx
callq read_int
movq %rax, -16(%rbp)
callq read_int
movq %rax, -24(%rbp)
callq read_int
movq %rax, %rsi
movq %rbx, %rdi
addq -16(%rbp), %rdi
movq -24(%rbp), %rbx
addq %rsi, %rbx
movq %rdi, %rax
addq %rbx, %rax
jmp conclusion

Recall that the caller-saved registers are

rax rcx rdx rsi rdi r8 r9 r10 r11

and the callee-saved registers are

rsp rbp rbx r12 r13 r14 r15

Solution: Note that the stack is aligned after the pushq %rbp instruction in the
prelude. In the start block there are 2 spills and 1 callee-saved register is assigned
to a variable, so we need 3× 8 = 24 bytes of extra space on the stack, but that’s not
evenly divisible by 16, so we add 8 to get 32 bytes. But since we move rsp by 8 with
the pushq %rbx, we only have 24 bytes left to move using the subq.

main:
pushq %rbp
movq %rsp, %rbp
pushq %rbx
subq $24, %rsp
jmp start

conclusion:
addq $24, %rsp
popq %rbx
popq %rbp
retq

Page 11 of 12

